Research Introduction

On Developing Robust and Generalized DeepFakes Detection Algorithms

Xiaoman Lu

Ubiquitous & Visual Computing (UV) Lab, University of Warwick

> Introduction of Deepfake

Motivation

Overview

Don't believe everything you see and hear in an internet video.

Deepfake = Deep Learning + Fake

Using artificial intelligence methods (deep learning) to generate fake images that closely resemble real effects.

The misuse of DeepFakes may lead to.....

Fake News Women's Safety Problem Financial fraud Political fraud

.

It's crucial to develop effective deepfake detection methods

> Motivation of My Research

Motivation

Overview

- Traditional detectors
- > based on intrinsic statistical information like local noise
- highly dependent on the scene & Insufficient robustness in complex media environments

- Deep Learning-based detectors
- based on spatial or frequency domain features
- detection performance sensitive to the datasets and pre-trained model

Ţ

Let DeepFakes detectors acquire classification features for the low-level attributes of facial images, thus improving **generalization** and **robustness**

> Research Overview

Background

> DeepFakes Detection by Remote Photoplethysmography (rPPG)

rPPG Signal

Each heartbeat causes periodic changes in skin microvessels, resulting in a periodic signal of light reflection.

Since the rPPG signal is a biometric signal with unique information, we can use this signals to detect deepfakes.

Image: Non-StateImage: Non-State<

Motivation

Deepfake detecting network with illumination information

Generalization Issue

Latent Space Augmentation

Enlarging the forgery space through **interpolating samples**

- encourages models to learn a more robust decision boundary
- helps alleviate the forgery-specific overfitting